Creating a mobile Wi-Fi network

As a part of a somewhat larger project I have been thinking about creating a mobile Wi-Fi network that can be carried around (and later can be extended to a network of multiple routers).

As I already have a PowerBank (basically a rechargeable battery with USB ports to charge a phone on the go) it looked like the ideal solution to use this as a power source. But then after a few searches of USB powered or at least 5 volts powered Wi-Fi access-points that meet my requirements to create a secured WDS (more on this in a later post) seemed to be too high. I found a few of them but they either were ridiculously priced or were given bad reviews.

At this time I realized that I had a good old Linksys WRT54GL router laying around. As this is a fairly common model with a quite favorable hackability factor, I did a quick research and found that this might be the best device for me.

IMG_9862_3_1600

The OpenWRT can be installed on this router and from software point of view it has all the features I want: WPA2 support, WDS (Wireless Distribution System – mesh, roughly), admin interface over HTTPS and is running Linux. Well, this last part was not strictly on the requirement list but hey, a device running Linux is always good to see (and opens up a lot of new opportunities).

On the hardware part I found out that the power adapter says it is supplying 12 volts and 0.5 amperes to the router. I found a few places where they told that just after the power jack there is a power regulator (a switching mode buck converter) that converts the voltage down to 3.3 volts. After taking apart I saw that this is indeed in place. Good thing about these buck converters that the input voltage range is usually wide, I found that it is about 3.7-16 volts, so it is more than suitable for my battery powered operation where the voltage drops over time when connected directly to the battery.

After finding out this wide range of input voltage I reconsidered my battery selection. Instead of using the PowerBank I decided to use a more universal solution – AA batteries. These can be found virtually anywhere and can be used for a lot more purposes when they are not used in this project. Also, hooking up 4 of them gives me 6 volts, but if I need more power then 8 of them is fine as well (giving 12 volts).

IMG_9865_3_1600

Here I used 2700 mAh batteries, 4 of them gives about 13 Wh (watt-hour) power (1.2 volts x 2.700 ampere-hour x 4), 8 of them gives about 26 Wh. If the router is consuming the maximum the original power adapter can provide (6 watts) then I can use the router for 2 hours straight from 4 batteries. But I really doubt that even a peak consumption ever reaches 6 watts.

Unfortunately it seems that the barrel plug power connector is not too stable (or maybe just the one I bought was of poor quality), when moving the router around a little a momentary loss of power (and therefore a reboot) was fairly common. So… as the router was already taken apart, I have soldered a pair of wires to the main board for the power and found a hole on the bottom of the case where I could bring the cable out without having to drill it.

It turned out to be working perfectly in the end.

In my next post I will write about making another WRT54GL mobile and setting up a WDS (Wireless Distribution System) to extend the range of the mobile Wi-Fi network.

Leave a Reply

Your email address will not be published. Required fields are marked *